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Lattice Gauge Theory with a Fast Highly 
Parallel Computer 

N .  H.  Chris t  I 

Results for the temperature of the color deconfinement phase transition in pure 
SU(3) lattice gauge theory are described. These were obtained on a specially 
built 16-node, 256 Megaflop computer using the Metropolis algorithm. The 
architecture, performance, and expansion plans for this machine are also dis- 
cussed. 
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1. I N T R O D U C T I O N  

The subject of this paper is well-suited for a conference honoring Dr. 
Metropolis: I will outline the architecture and describe the performance of 
a very economical parallel computer being built by a group of theoretical 
physicists at Columbia to study lattice gauge theory/1/ I will present the 
numerical results that we have collected over the last four months studying 
the color-deconfinement phase transition in lattice QCD using the 
Metropolis algorithm. 

Recognizing the fine talks on lattice gauge theory that have come 
earlier, it is perhaps not necessary to review lattice QCD.or to discuss in 
detail the tremendous computer requirements of these calculations. Suffice 
it to say that a standard 10-hit Metropolis update of a single SU(3) link 
variable requires approximately 5000 floating point operations, that a 324 
lattice contains 4 million link variables, and that a typical calculation 
requires 104-105 updates of the entire lattice for a single choice of 
parameters. Including fermion loops in the computation requires at least an 
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additional factor of 10. Thus, such a calculation requires more than a year 
on a 1-gigaflop machine operating at 100% efficiency! Each serious lattice 
QCD research group should have its own dedicated CRAY2 or 4-processor 
XMP at a minimum. 

Fortunately, the structure of the lattice gauge theory calculation 
allows the use of much more economical computer architectures. The 
homogeneous, local, and statistical nature of the calculations make a mesh 
interconnected array of pipe-lined floating point processors an ideal 
architecture. We have built a CRAY1 equivalent, 16-processor machine for 
$100,000 and are more than half way through the construction of a 
CRAY2 equivalent 64-node machine that will have cost less than $400,000 
when it is completed. Two of us began this project almost three years ago 
(A. Terrano and myself). Our group has now grown to include six physics 
graduate students and junior faculty. 

2. A R C H I T E C T U R E  

Let me begin by describing our design. Since the reliability of our off- 
the-shelf TTL  hardware limits us to approximately 1000 processors and we 
expect to work on lattices of linear dimension on the order of 10 to 30, the 
minimum dimension for our mesh is 2. We choose the minimum as the 
most economical. We then divide the four-dimensional space-time lattice 
into blocks of two-dimensional hyperplanes storing each block in the 
memory of a single node. We interconnect the memories with processors so 
that each pair of nearest-neighbor memories is joined by at least one 
processor. Figure 1 shows our interconnection scheme. 

The elements making up a single node are shown in Fig. 2. The com- 
bination of the 80286/80287, 32kbyte  of no-wait-state parity-checked 
memory and the Multibus interface is equivalent to a very fast personal 
computer. What makes our machine interesting is the addition of the 
floating point vector processor unit connected to two 64 kbyte banks of 
45 ns static memory. 

The vector processor is designed in the simplest fashion permitted by 
our lattice gauge theory application. It consists of a floating point mul- 
tiplier (constructed from a TRW 16-bit integer multiplier), a floating point 
adder, and associated registers, as shown in Fig. 3. We use a 22-bit 
arithmetic word with a 16-bit significant and 6-bit exponent. Since the 
memory and data busses use a 16-bit word, a real number is stored in one 
and one-half words and a complex number in three words. The input and 
output registers in Fig. 3 are configured to transform between these two 
formats. 
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Fig. 1. The interconnection scheme for our 16-node machine. The squares represent 
independent memory elements while the circles stand for processors. The paired memories and 
processors are located on the same board. The heavy lines indicate a one-dimensional path 
determined in software which is used to load and unload the machine from the host computer. 

The control of the vector processor, detailed in Fig. 4, is a central 
element of our design. On the lowest level, the vector processor is 
microcode-controlled, with the microcode stored as 4096, 56-bit words. 
However, this microcode memory is addressed by the most primative 
sequencer: a counter which simply steps sequentially through a series of 
addresses beginning with an initial address loaded by the 80286 and con- 
tinuing until a microcode "stop" bit becomes true. Any branching or loop- 
ing is done by the microprocessor which must restart the vector 
processor--an operation that we have worked to make very efficient. 

The eight base address registers that locate the arguments in memory 
for the vector processor are divided into two groups of four: while one 
group is being used by the vector processor, the second group is available 
to be reloaded by the 80286. The three remaining operations necessary to 
restart the vector processor have been compressed into a single 80286 move 
instruction. During that move operation data is loaded into the latch, 
which configures the data paths, and the microcode address counter started 
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Fig. 2. The elements making up a single node of the computer. 

at an address given by the lower address bits of destination of the move 
operation. Less than 1 #s passes between the end of one vector processor 
operation and the start of the next. 

The interprocessor connection shown in Figs. 1 and 2 requires some 
further explanation. As these diagrams suggest, we simply connect the data 
busses between neighboring processors. One of the two banks of data 
memory (that feeding the Xbus  in Fig. 2) is always providing data to the 
local vector processor. The second data bank is connected by the Y bus 
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Fig. 3. A block diagram of the data handling components of the vector processor. 

either to the local vector processor or to the vector processor in the - x  or 
- y  directions. During such an interboard operation (either reading or 
writing) the local vector processor is joined to the corresponding bank of 
the neighboring node in the + x  or + y  direction. The addresses for both 
memory banks are provided by the local vector processor and these off- 
board transfers require lock-step, synchronous operation for all com- 
municating boards. 

The final element of the computer is the "central controller" whose 
interconnection with the individual nodes is represented in Fig. 5. This is a 
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Fig. 4. The control circuitry for the vector processor. 

single board which generates a 12-MHz clock signal for the 80286 and a 8- 
MHz clock signal for the vector processor. It is the only element of the 
machine connected to the host computer (a VAXll/780). Under instruc- 
tion from the host it will interrupt or reset the array of processors. Conver- 
sely it will relay a finished or error signal from the array to the host. 
Finally it will resynchronize the array after receiving a request to that effect 
from all nodes. 

3. P R O G R A M M I N G  

The machine is programmed on three levels. At the bottom one has 
the microcode driving the vector processor. These microcode programs are 
treated as subroutines typically performing a few hundred floating point 
operations. For  example, the lattice gauge theory calculations require 
microcoded routines which multiply a pair of SU(3) matrices, calculate the 
exponential of a real number or multiply a pair of SU(3) matrices, and add 
the product to a third matrix. These programs are created by a microcode 
assembler which runs on the VAX. 
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Fig. 5. The "radial" connection of each node to the central controller. Each dotted line 
represents a ribbon cable carrying eight signals. 

The next layer of programing directs the microprocessor's control of 
the vector processor. This code must execute very efficiently to keep pace 
with the vector processor and is written in assembly language. A well- 
designed application program will use microcode routines of at least a hun- 
dred lines. This will allow the 10#s required by an 80286 assembly 
language program to concurrently prepare for the next vector processor 
operation. 

Finally, on the highest level, one has a For t ran or PL/M program 
which moves data from the disks or Multibus memory  and calls the more 
primative subroutines. 

4. P E R F O R M A N C E  

Figure 6 shows the 16-node machine. Each board has its own four-slot 
Multibus card cage, each with two �89 Mbyte commercial memory boards. 
Each fourth card cage also contains a disk controller connected to a 
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Fig. 6. The magni tude of the expectation value of the Wilson line operator,  averaged over 
blocks of 100 Monte  Carlo sweeps, as a function of/3 for lattices with a spacial volume of 163 
and 10, 12, and 14 sites in the time direction. 

500 Mbyte Winchester disk. Thus the 16-node machine has 16 Mbytes of 
Multibus memory and 2 Gbytes of disk storage. The individual boards 
measure 12 x 18 in and cost under $3000 to fabricate. 

The performance of the machine can be best described by the 
execution time required by various lattice gauge theory programs. For 
example, a SU(3) matrix multiplication can be performed by a microcode 
program of 145 lines, which implies a computational rate of 11 Mflop/s. 
The sequence of many such multiplications and accumulations needed to 
compute the total action of the system under study is not as efficient and 
runs at approximately 7 Mflop/s. The evaluation of an exponential is a less 
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vectozized operation that is performed to machine accuracy in 10 #s by the 
vector processor. A complete Metropolis program that carries out a full 
statistical simulation (generation of random numbers, computation of 
exponentials, and, in general, considerable scalar operation) is usually 
characterized by the time required to update a single 3 x 3 complex matrix. 
This update time is 20ms for a VAXll/780, 2ms for a CDC 7600, and 
80/~s for a Cray-1. For our 16-node machine the corresponding time is 
180/~s. We have made changes to a single board, which when made to all 
16, will halve this time. 

5. C O L O R  D E C O N F I N I N G  P H A S E  T R A N S I T I O N  

Finally, ! would like to describe the calculation that we are presently 
doing with the machine. Recall that the lattice version of non-Abelian 
gauge theory approximates space-time by a four-dimensional mesh of 
points with lattice spacing a. The gauge variables are associated with the 
links joining neighboring sites: an SU(3) matrix Ut is introduced for each 
link l, so that an observable O(U) can be computed from the path intergral 

(O}=~Ifd[U,]exp(~o~.retr 
l p 

.-,. {,'--,o'tr [,:"]} (1) 

Here the sum in the exponent is over all elementary plaquettes p in the lat- 
tice. 

Of course, the lattice used in an actual evaluation of (1) necessarily 
corresponds to a finite space-time volume. When performed in such a finite 
volume with periodic boundary conditions in the time direction, the 
Euclidean path integral in (1) is actually a calculation of 

tr{e H/kVO} 
tr {e Wkr} (2) 

where the temperature T is related to the number of sites N, in the time 
dimension of the lattice by kTa = l /N, .  

The quantity that we have been studying is the temperature of the 
color deconfinement phase transition T,. Since the lattice spacing a is the 
only dimensioned parameter in the calculation, T~. has the form 

Tc = t (~) /a  (3) 
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where the conventional parameter fl = 6/g~. We can then adjust fl until the 
critical temperature Tc equals the temperature of the lattice T =  1/N,a. If 
we call that value tic, then 

1/N, = t(flc) (4) 

and varying N, allows us to determine t(fl). 
This function is of special interest because it is predicted by continuum 

perturbation theory 

(2~ 51/121 
t ( f lc )  = C k g 2 )  e (24rr2/33go2)rl q- O(g2)] (5) 

up to the constant c. Comparison of t(fl) with (5) is an important test that 
the lattice spacing a has been chosen sufficiently small. 

The critical value of fi can be recognized by measuring the expectation 
value of the Wilson line operator 

WL(U)= tr {lOL U' } (6) 

This operator is constructed as the trace of the product of the link matrices 
lying along a line L in the time direction. It is the large mass limit of the 
propagator of a single quark fixed at the spacial position of the line L. We 
can increase our statistics by averaging over all possible lines. For T <  T~, 
the theory is confining and such a isolated quark has an infinite energy, so 
the expectation value of WL should vanish. For T >  T~., the massive quark 
has a finite self-energy Eq. Thus we expect 

(WL(U)) = 0 T< T c (7a) 

(WL(U)) =~e -e~/~r T >  T~. (7b) 

Unfortunately, this hypothesis has two difficulties. Even if 
(WL(U))r for T >  To, it is still very small since the self-energy of a 
massive point charge is linearly divergent in the limit a--} 0. Second, for a 
finite volume with periodic boundary conditions, we must worry about the 
inconsistency of Gauss's law if only a single charge is present in the 
volume. This is realized by the presence of a zero mode, the integration 
over which makes the expectation value in (10) vanish for any value of T. 

For the non-Abelian theory, this zero mode is the symmetry Ut--} zUt 
for all time-like links l in a particular time plane. Here z is one of the cube 
roots of unity. Since this Z3 symmetry transformation multiplies (WL(U))  
by z, integration over these three transforms of many gauge-field con- 
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figuration makes < WL(U)> vanish. As the volume becomes infinite such 
global changes of phase become impossible. Thus for a finite volume 
calculation we must limit the length of Monte Carlo time over which we 
average to avoid these jumps in Z3 phase. This in turn limits the precision 
with which (Ta) can be measured. 

Our results to date for a lattice of spacial volume 163 are shown in 
Fig. 6. For each of the three temporal dimensions, the magnitude of the 
Wilson line is plotted as a function of/3. This quantity is obtained from our 
Monte Carlo calculation by first averaging the trace in (6) over all 163 lines 
in our spacial volume and then averaging over blocks of 100 Monte Carlo 
sweeps. The magnitudes of the complex numbers obtained from each block 
are then averaged and the fluctuations among them (including the effects of 
correlations) used to compute the errors. We interpret the rise in 
t < WL(U) >1 over the narrow range of/~ shown in Fig. 6 as arising from the 
deconfining phase transition. Assuming that the critical value of/3 lies in 
the region of greatest increase, we deduce that /3 take values 6.05 +.05, 
6.275 __% .025, and 6.40 _+ .05 for lattices with Nt = 10, 12, and 14, respec- 
tively. (These preliminary conclusions are confirmed and strengthened by a 
more detailed analysis in Ref. 2.) 

These results are compared to values of /3 obtained earlier (3) on 
smaller lattices and to the predictions of scaling in Fig. 7. The essentially 
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Fig. 7. The color-deconfinement critical temperature as a function of/~. The solid line has 
the slope predicted by the continuum renormalization group eq. (5). 
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straight line shown in the figure is the prediction of (5) with the mul- 
tiplicative constant adjusted to make the curve pass through our three 
points. As can be seen, the region fl > 6.05 shows a different fl dependence 
than that seen for lower fl values, a behavior consistent with the predic- 
tions of continuum perturbation theory and the renormalization group. 
Thus we tentatively conclude that for fl > 6.05 the lattice spacing a = .1/kTc 
is sufficiently small that the continuum theory is being described. 

This is a very positive conclusion. If realistic calculations require a 
choice of/3 making physical lengths on the order of 10 lattice spacings, 
then lattices of perhaps 32 sites on a side will be adequate to make real 
numerical tests of QCD. Lattices of this size are certainly quite feasible on 
the 64-node machine mentioned earlier. However, the inclusion of Fermion 
loops on such a lattice will most likely require the 256-node machine that is 
the final phase of our project. With some good fortune, this 4 Gflop com- 
puter should be operational in 1�89 years. 
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